Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Journal of Environmental Sciences (China) ; 135:424-432, 2024.
Article in English | Scopus | ID: covidwho-2286087

ABSTRACT

The outbreak of COVID-19 has caused concerns globally. To reduce the rapid transmission of the virus, strict city lockdown measures were conducted in different regions. China is the country that takes the earliest home-based quarantine for people. Although normal industrial and social activities were suspended, the spread of virus was efficiently controlled. Simultaneously, another merit of the city lockdown measure was noticed, which is the improvement of the air quality. Contamination levels of multiple atmospheric pollutants were decreased. However, in this work, 24 and 14 air fine particulate matter (PM2.5) samples were continuously collected before and during COVID-19 city lockdown in Linfen (a typical heavy industrial city in China), and intriguingly, the unreduced concentration was found for environmentally persistent free radicals (EPFRs) in PM2.5 after normal life suspension. The primary non-stopped coal combustion source and secondary Cu-related atmospheric reaction may have impacts on this phenomenon. The cigarette-based assessment model also indicated possible exposure risks of PM2.5-bound EPFRs during lockdown of Linfen. This study revealed not all the contaminants in the atmosphere had an apparent concentration decrease during city lockdown, suggesting the pollutants with complicated sources and formation mechanisms, like EPFRs in PM2.5, still should not be ignored. © 2022

2.
Struct Chang Econ Dyn ; 65: 151-165, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2287035

ABSTRACT

As the first major developing country heavily struck by the COVID-19 pandemic, China adopted the world's most stringent lockdown interventions to contain the virus spread. Using macro- and micro-level data, this paper shows that both the pandemic and lockdown policies have had negative and significant impacts on the economy. Gross regional product (GRP) fell by 9.5 and 0.3 percentage points in cities with and without lockdown interventions, respectively. These impacts represent a dramatic recession from China's average growth of 6.74% before the pandemic. The results indicate that lockdown explains 2.8 percentage points of the GDP loss. We also document significant spill-over effects of the pandemic in adjacent areas but no such effects of lockdown. Reduced labor mobility, land supply, and entrepreneurship are among the most significant mechanisms underpinning the impacts of the pandemic and lockdown. Cities with higher share of secondary industry, higher traffic intensity, lower population density, lower internet access, and lower fiscal capacity suffered more. However, these cities seem to have recovered well from the recession and quickly closed the economic gap in the aftermath of the pandemic and city lockdown. Our findings have broader implications for the global interventions in pandemic containment.

3.
Frontiers in Environmental Science ; 10, 2022.
Article in English | Web of Science | ID: covidwho-2109749

ABSTRACT

In response to the COVID-19 outbreak, severe steps have been taken to control its rapid spread by countries globally. A nationwide lockdown was executed at the end of January 2020 in China, which resulted in a significant change and an improvement in air quality patterns. In this study, the objectives were to assess the spatiotemporal impact of the COVID-19 lockdown on air quality in Nanjing, China. The present study researched the six air pollutant parameters, namely, PM10, PM2.5, SO2, NO2, CO, and O-3. The data were divided into six periods, P1-P3: pre-lockdown, during lockdown, and after lockdown periods, P4-P6: 2017-19 (same dates of lockdown). The results reveal that during the COVID-19 control period, a significant drop and an improvement in air quality were observed. According to our findings, the PM10, PM2.5, SO2, NO2, and CO concentrations were reduced by -33.03%, -35.41%, -21.26%, -39.79%, and -20.65%, respectively, while the concentration of O-3 significantly increased by an average of 104.85% in Nanjing. From the previous 3 years to lockdown variations, PM10 (-40.60%), PM2.5 (-40.02%), SO2 (-54.19%), NO2 (-33.60%), and CO (23.16%) were also reduced, while O-3 increased (10.83%). Moreover, compared with those in the COVID-19 period, the levels of PM10, SO2, NO2, CO, and O-3 increased by 2.84%, 28.55%, 4.68%, 16.44%, and 37.36%, respectively, while PM2.5 reduced by up to -14.34% after the lockdown in Nanjing. The outcomes of our study provide a roadmap for the scientific community and local administration to make policies to control air pollution.

4.
Journal of Environmental Sciences ; 2022.
Article in English | ScienceDirect | ID: covidwho-2004215

ABSTRACT

The outbreak of COVID-19 has caused concerns globally. To reduce the rapid transmission of the virus, strict city lockdown measures were conducted in different regions. China is the country that takes the earliest home-based quarantine for people. Although normal industrial and social activities were suspended, the spread of virus was efficiently controlled. Simultaneously, another merit of the city lockdown measure was noticed, which is the improvement of the air quality. Contamination levels of multiple atmospheric pollutants were decreased. However, in this work, 24 and 14 air fine particulate matter (PM2.5) samples were continuously collected before and during COVID-19 city lockdown in Linfen (a typical heavy industrial city in China), and intriguingly, the unreduced concentration was found for environmentally persistent free radicals (EPFRs) in PM2.5 after normal life suspension. The primary non-stopped coal combustion source and secondary Cu-related atmospheric reaction may have impacts on this phenomenon. The cigarette-based assessment model also indicated possible exposure risks of PM2.5-bound EPFRs during lockdown of Linfen. This study revealed not all the contaminants in the atmosphere had an apparent concentration decrease during city lockdown, suggesting the pollutants with complicated sources and formation mechanisms, like EPFRs in PM2.5, still should not be ignored.

5.
FRONTIERS IN ENVIRONMENTAL SCIENCE ; 10, 2022.
Article in English | Web of Science | ID: covidwho-1911031

ABSTRACT

After the COVID-19 pandemic began in 2020, Urumqi, a remote area in northwest China, experienced two lockdowns, in January and July 2020. Based on ground and satellite observations, this study assessed the impacts of these lockdowns on the air quality in Urumqi and the seasonal differences between them. The results showed that, during the wintertime lockdown, PM10, PM2.5, NO2, CO, and SO2 levels decreased by 38, 40, 45, 27, 8%, respectively, whereas O-3 concentrations increased by 113%. During the summer lockdown, PM10, PM2.5, NO2, CO, and SO2 levels decreased by 39, 24, 59, 2, and 13%, respectively, and the O-3 concentrations increased by 21%. During the lockdowns, the NO2 concentrations decreased by 53% in winter and 13% in summer in the urban areas, whereas they increased by 23% in winter and 9% in summer in the suburbs. Moreover, large seasonal differences were observed between winter and summer SO2, CO, and O-3. The lockdown played a vital role in the rapid decline of primary air pollutant concentrations, along with fewer meteorological impacts on air pollution changes in this area. The increase in O-3 concentrations during the COVID-19 lockdowns reflects the complexity of air quality changes during reductions in air pollutant emissions.

6.
Int J Environ Res Public Health ; 18(12)2021 06 13.
Article in English | MEDLINE | ID: covidwho-1270044

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that was reported at the end of 2019 in Wuhan, China, and was rapidly disseminated to all provinces in around one month. The study aims to assess the changes in intercity railway passenger transport on the early spatial transmission of COVID-19 in mainland China. Examining the role of railway transport properties in disease transmission could help quantify the spatial spillover effects of large-scale travel restriction interventions. This study used daily high-speed railway schedule data to compare the differences in city-level network properties (destination arrival and transfer service) before and after the Wuhan city lockdown in the early stages of the spatial transmission of COVID-19 in mainland China. Bayesian multivariate regression was used to examine the association between structural changes in the railway origin-destination network and the incidence of COVID-19 cases. Our results show that the provinces with rising transfer activities after the Wuhan city lockdown had more confirmed COVID-19 cases, but changes in destination arrival did not have significant effects. The regions with increasing transfer activities were located in provinces neighboring Hubei in the widthwise and longitudinal directions. These results indicate that transfer activities enhance interpersonal transmission probability and could be a crucial risk factor for increasing epidemic severity after the Wuhan city lockdown. The destinations of railway passengers might not be affected by the Wuhan city lockdown, but their itinerary routes could be changed due to the replacement of an important transfer hub (Wuhan city) in the Chinese railway transportation network. As a result, transfer services in the high-speed rail network could explain why the provinces surrounded by Hubei had a higher number of confirmed COVID-19 cases than other provinces.


Subject(s)
COVID-19 , Bayes Theorem , China/epidemiology , Cities , Communicable Disease Control , Humans , SARS-CoV-2
7.
Front Pediatr ; 9: 644771, 2021.
Article in English | MEDLINE | ID: covidwho-1211839

ABSTRACT

In 2020, the global spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (also known as COVID-19) has led to pandemic health issues with significant changes in individual and community practices. Preterm birth could be one of the risks in pregnant mothers who are infected by the SARS-CoV-2. Preterm births contribute upto 10% of all births and incur significant impact on the child health and cost to the health care system. However, the association of city lockdown during COVID-19 pandemic with the rate of preterm births is unclear. In a cohort study, we examined the association of city lockdown during the COVID-19 pandemic with the births at different gestations in three different cities. Compared with the pre-pandemic epoch, the associative relationships ranged from a decrease in all births, all births across all preterm gestations and to preterm births in moderately and late preterm gestations. We concluded that there were variable associative relationships of city lockdown during COVID-19 pandemic with preterm births. This could be related to the differences in health, societal and cultural factors, which will inspire further studies in this area.

8.
Infect Dis Model ; 6: 618-631, 2021.
Article in English | MEDLINE | ID: covidwho-1169180

ABSTRACT

In 2020, an unexpectedly large outbreak of the coronavirus disease 2019 (COVID-19) epidemic was reported in mainland China. As we known, the epidemic was caused by imported cases in other provinces of China except for Hubei in 2020. In this paper, we developed a differential equation model with tracing isolation strategy with close contacts of newly confirmed cases and discrete time imported cases, to perform assessment and risk analysis for COVID-19 outbreaks in Tianjin and Chongqing city. Firstly, the model behavior without imported cases was given. Then, the real-time regeneration number in Tianjin and Chongqing city revealed a trend of rapidly rising, and then falling fast. Finally, sensitivity analysis demonstrates that the earlier with Wuhan lock-down, the fewer cases in these two cities. One can obtain that the tracing isolation of close contacts of newly confirmed cases could effectively control the spread of the disease. But it is not sensitive for the more contact tracing isolation days on confirmed cases, the fewer cases. Our investigation model could be potentially helpful to provide model building technology for the transmission of COVID-19.

9.
Cities ; 110: 103010, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1064937

ABSTRACT

Understanding the processes and mechanisms of the spatial spread of epidemics is essential for making reasonable judgments on the development trends of epidemics and for adopting effective containment measures. Using multi-agent network technology and big data on population migration, this paper constructed a city-based epidemic and mobility model (CEMM) to stimulate the spatiotemporal of COVID-19. Compared with traditional models, this model is characterized by an urban network perspective and emphasizes the important role of intercity population mobility and high-speed transportation networks. The results show that the model could simulate the inter-city spread of COVID-19 at the early stage in China with high precision. Through scenario simulation, the paper quantitatively evaluated the effect of control measures "city lockdown" and "decreasing population mobility" on containing the spatial spread of the COVID-19 epidemic. According to the simulation, the total number of infectious cases in China would have climbed to 138,824 on February 2020, or 4.46 times the real number, if neither of the measures had been implemented. Overall, the containment effect of the lockdown of cities in Hubei was greater than that of decreasing intercity population mobility, and the effect of city lockdowns was more sensitive to timing relative to decreasing population mobility.

10.
Cities ; 107: 102869, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-693589

ABSTRACT

The special epistemic characteristics of the COVID-19, such as the long incubation period and the infection through asymptomatic cases, put severe challenge to the containment of its outbreak. By the end of March 2020, China has successfully controlled the within- spreading of COVID-19 at a high cost of locking down most of its major cities, including the epicenter, Wuhan. Since the low accuracy of outbreak data before the mid of Feb. 2020 forms a major technical concern on those studies based on statistic inference from the early outbreak. We apply the supervised learning techniques to identify and train NP-Net-SIR model which turns out robust under poor data quality condition. By the trained model parameters, we analyze the connection between population flow and the cross-regional infection connection strength, based on which a set of counterfactual analysis is carried out to study the necessity of lock-down and substitutability between lock-down and the other containment measures. Our findings support the existence of non-lock-down-typed measures that can reach the same containment consequence as the lock-down, and provide useful guideline for the design of a more flexible containment strategy.

11.
Math Biosci Eng ; 17(4): 3710-3720, 2020 05 21.
Article in English | MEDLINE | ID: covidwho-688913

ABSTRACT

Since December 2019, an outbreak of a novel coronavirus pneumonia (WHO named COVID-19) swept across China. In Shanxi Province, the cumulative confirmed cases finally reached 133 since the first confirmed case appeared on January 22, 2020, and most of which were imported cases from Hubei Province. Reasons for this ongoing surge in Shanxi province, both imported and autochthonous infected cases, are currently unclear and demand urgent investigation. In this paper, we developed a SEIQR difference-equation model of COVID-19 that took into account the transmission with discrete time imported cases, to perform assessment and risk analysis. Our findings suggest that if the lock-down date in Wuhan is earlier, the infectious cases are fewer. Moreover, we reveal the effects of city lock-down date on the final scale of cases: if the date is advanced two days, the cases may decrease one half (67, 95% CI: 66-68); if the date is delayed for two days, the cases may reach about 196 (95% CI: 193-199). Our investigation model could be potentially helpful to study the transmission of COVID-19, in other provinces of China except Hubei. Especially, the method may also be used in countries with the first confirmed case is imported.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Models, Biological , Pandemics , Pneumonia, Viral/transmission , Basic Reproduction Number/statistics & numerical data , COVID-19 , China/epidemiology , Computer Simulation , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Humans , Markov Chains , Mathematical Concepts , Monte Carlo Method , Pandemics/prevention & control , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/statistics & numerical data , SARS-CoV-2 , Time Factors , Travel/statistics & numerical data
12.
Int J Infect Dis ; 93: 211-216, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-6596

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) outbreak, emerged in Wuhan, China in the end of 2019, has claimed more than 2600 lives as of 24 February 2020 and posed a huge threat to global public health. The Chinese government has implemented control measures including setting up special hospitals and travel restriction to mitigate the spread. We propose conceptual models for the COVID-19 outbreak in Wuhan with the consideration of individual behavioural reaction and governmental actions, e.g., holiday extension, travel restriction, hospitalisation and quarantine. We employe the estimates of these two key components from the 1918 influenza pandemic in London, United Kingdom, incorporated zoonotic introductions and the emigration, and then compute future trends and the reporting ratio. The model is concise in structure, and it successfully captures the course of the COVID-19 outbreak, and thus sheds light on understanding the trends of the outbreak.


Subject(s)
Coronavirus Infections/epidemiology , Disease Outbreaks , Models, Biological , Pneumonia, Viral/epidemiology , Public Health/legislation & jurisprudence , Betacoronavirus , COVID-19 , China/epidemiology , Government , Government Regulation , Humans , Influenza Pandemic, 1918-1919/statistics & numerical data , Pandemics , Quarantine , SARS-CoV-2 , Travel/legislation & jurisprudence , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL